题目描述
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项。
n<=39
题目链接:https://www.nowcoder.com/questionTerminal/c6c7742f5ba7442aada113136ddea0c3
分析
给出解法,详细分析见后面:
这个题可以说是迭代(Iteration) VS 递归(Recursion),
f(n) = f(n-1) + f(n-2),第一眼看就是递归啊,简直完美的递归环境,递归肯定很爽,这样想着关键代码两三行就搞定了,注意这题的n是从0开始的:
然而并没有什么用,测试用例里肯定准备着一个超大的n来让Stack Overflow,为什么会溢出?因为重复计算,而且重复的情况还很严重,举个小点的例子,n=4,看看程序怎么跑的:
由于我们的代码并没有记录Fibonacci(1)和Fibonacci(0)的结果,对于程序来说它每次递归都是未知的,因此光是n=4时f(1)就重复计算了3次之多。
那么如何求解呢,动态规划似乎不错,关于动态规划三个条件:最优子结构、无后效性、子问题重叠这些就不谈了,因为理(wo)论(ye)性(bu)太(tai)强(dong)了。
下例是一个简单的动态规划,以一定的空间代价避免代价更大的重复计算的栈空间浪费:
虽然看起来很蠢,空间浪费了sizeof(int)*(n-1)
,但是对于那个超大n的测试用例应该是可以通过了,时间复杂度也达到了O(n)。
那能不能把“优雅”的递归和动态规划结合起来呢?递归的优点在于便于理解和编码,而重复计算的关键原因在于代码里直接就“递”进去然后等着“归”了,所以避免重复的关键在于对子问题是否已经得出解的判断,即: